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Frequency integrated radiation models for
absorbing and scattering media

By J.F. Ripoll AND A.A. Wrayt

1. Motivation and objectives

The objective of this work is to contribute to the simplification of existing radiation
models used in complex emitting, absorbing, scattering media. The application in view
is the the computation of flows occuring in such complex media, such as certain stellar
interiors or combusting gases. In these problems, especially when scattering is present,
the complexity of the radiative transfer leads to a high numerical cost, which is often
avoided by simply neglecting it. This complexity lies partly in the strong dependence of
the spectral coefficients on frequency (Modest 2003; Siegel & Howell 2001). Models are
then needed to capture the effects of the radiation when one cannot afford to directly
solve for it. In this work, the frequency dependence will be modeled and integrated
out in order to retain only the average effects. A frequency-integrated radiative transfer
equation (RTE) will be derived. In it, the absorption and scattering will be treated
through the use of mean coefficients (Siegel & Howell 2001 and references in it). To
obtain these coefficients, it is needed to assume a form for the intensity, which we take
to be the maximum entropy closure (Minerbo 1978). Such an intensity is a function of
the macroscopic radiative energy and flux and accounts for the variations of radiation
in the considered medium. Models for mean absorption, mean isotropic scattering, and
mean non-isotropic scattering coefficients will be proposed in the case where the various
spectral coefficients can be written as polynomial functions of the frequency. Some of
these models have already been derived and tested for non-scattering media in (Ripoll
et al. 2001; Ripoll & Wray 2004a). They are here extended to the general case of emitting,
absorbing, and scattering media. A direct application will be given for soot, which follows
a linear frequency law for absorption; isotropic and incoming scattering spectral models
are also here roughly approximated by a linear law. Macroscopic radiation models will also
be derived with absorption and scattering coefficients since they constitute an alternative
to the use of the RTE in cases where this equation is too costly to solve, as in many
coupled problems. Finally, we believe another application of these models could be for
radiating flows occuring in dusty media.

2. A frequency integrated RTE with mean coefficients
2.1. Generalities
The radiative transfer equation (RTE) describes the evolution of the radiative intensity
within a emitting, absorbing, and scattering medium and is given by
o*(v)

A
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where the intensity I = I(t,r,Q,v) is a function of the time ¢, the position r, the direction
of propagation Q, and the frequency v. Here ¢ is the velocity of light, o%(v) is the
spectral absorption coefficient, 0?*(v) the spectral isotropic scattering coefficient, o®(v)
the spectral incoming scattering coefficient, and Q' the original direction of radiation
scattered into 2. The Planck radiative intensity B describes the isotropic emission of the
medium at the frequency v and temperature T by

2hv? hv -1
T)= — 1 2.2
B(”’ ) C [eXp( kT) ] ( )
where h is the Planck constant, k the Boltzmann constant, and v the frequency. We

assume in this paper that the phase function of scattering ®(v, 2 — ') can be expressed
as

(v, Q= Q) =al)+80W)Q-Q +v)(2- Q) +9)5(Q - Q) (2.3)
where 0(-) is the Dirac delta function, and the coefficients, «, 3, v, and 7 are all in general
functions of the frequency. They must be defined such that the following normalization
property holds:

@) / 3(v, Q2 - Q)dQ = 0% (v). (2.4)
47 Q
2.2. Derivation of the RTE with mean coefficients

By integrating the RTE over frequency and introducing the quantity{ J(¢,r,€2)
= fooo I(t,r,Q,v)dv = (I),, we obtain

%atJ 4 QYT = (0B, T))w — (0 W)])y — {o° ()I)s

o®(v)
A7

We now introduce the following mean absorption and scattering coefficients:
vy _ (P WBE T,

+ / I(2)3(v, Q2 — Q')dD'),. (2.5)

r (B, T)), (26)

U (1, Q) = <ga<(I,,()t Iit, ;;, syz),;/)),, @7)
R 28)
op(t,r) = <US(V<)1(S:, ig r u)()z,l,,n:»m’ (2.9)
o3t e, Q) = <a*’(v<)£<_vs);2[ ( tmgry)s;:))n 2.10)
P a0 I 0 R (RN 1)

(- QN)2I(t,r, Q' v)),q
where the superscripts e, a, is, and s designate respectively emission, absorption, isotropic
scattering, and scattering. We define x(v) = o*(v)n(v)/(4wc®®(v)). Using these defini-
tions and without any assumptions other than the form of the phase function (2.3), the

1 We will denote the integration of a function f over the variables X, Y, Z as (f)x,v,z
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frequency-integrated RTE becomes
1 i 1
ZOJ+QVJ = "4LaT BT—0p T+ | J@) ok +orQ- Q' oh(2-2)) Y
C T Q

(2.12)
where the constant a = 87°k*/(15h%c?). It should be noted that the mean scattering
coefficients in the integral do not depend on £2, unlike 0% and o',

As a simplifying approximation, we now eliminate the Q dependence of the two mean
coefficients 0% and o%. This can be done by simply approximating the numerator and
denominator in (2.7) and (2.8) by their Q-integrated forms. Alternately, we integrate
2.12 indefinitely over 2, using the polar variables y = cos and ¢, to obtain

_oe" J{oe®*W)I(t,r,Q,v)), dudp
/8tJ+Q VI ddg = “L-aT* g - Tl O o /Jd d

f(a WV)[1-xW)]I(tr,Q,v)), dudd
- [({I(t,r,Q,v)), dudd /Jd dé

+/4i J() (0% + b - Q' + 04(Q - Q)2) dQ dp dg
™ Joy
(2.13)

We now replace the indefinite integrals in the numerator and denominator of the second
and third terms on the rhs of (2.13) with definite integrals over the full 47 of  and then
differentiate the resulting equation with respect to p and ¢.

This approximation allows us to define the following new mean absorption and scat-
tering coefficients 0%, 0%, and 0%, the last two being approximations of o" and a” v
respectively:

1) = (OB e

op B Tee op’(T) (2.14)
a (e W)It,r, Qv))va (oW, Qv))van _ Y
B = i e S I CF 219
o5 (W) [1— x(W)]I(t,r,Q,v))0

is (
oi(t,r) = (I(t,r,Qv))a

~ (Uis( )[1 — (V)] I(t,r,ﬂ,y)),,, T o _is,v
~ T 0)s i = giev, (2.16)

The elimination of the € dependence of the mean absorption coefficients constitutes our
first approximation. It is not strictly necessary to the closure: one could choose to not
make it. The three mean incoming scattering coefficients are unchanged from (2.9)-(2.11).
The frequency-integrated RTE with these approximations becomes

1 e .

29I+ Q-VJ=TPart 505 ot

c 47
1

+ el J(Q’)(ag +05Q-Q +05(Q2-Q2)HdQ . (2.17)

We now introduce the following macroscopic quantities: the radiative energy given by

Brltx) = {15,200 = + (T(19)q (2.18)
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the radiative flux
FR(ta I') = <Q I(ta r,Q, V))V,Q = (Q J(ta r, Q))Q (219)

and finally the radiative pressure
1 1
Pgr(t,r) = - QeI r,Qv), o= - (e Q2 J(t,r,Q))g (2.20)

It should be noted that in (2.17) these moments appear in the integral term of the
scattering. This term can then be absorbed in the definition of the moments and the
integrated RTE written as

e

1 g a i8
EatJ+Q'vJ=ﬁaT4_UEJ_O—E

1 S
+E(CUSEER+U;FR-Q+CJSG Y PEai).  (221)

i,j=1..3

For this equation four remarks should be given. First, the introduction of the mean coef-
ficients allows expressing the scattering term as a function of the moments. Integrations
of the intensity are still needed in order to compute the moments, and in that sense the
formulations (2.17) and (2.21) are equivalent. Second, if the phase function has moments
of order higher than 2, this will introduce moments of order higher than the pressure in
the scattering term. Third, if the intensity used in the mean incoming scattering coeffi-
cients is the exact one, then the incoming scattering term is exact. Finally, this equation
has been derived with two assumptions relative to the absorption and isotropic scattering
terms, namely (2.15) and (2.16).

The frequency-integrated RTE (2.21) will be closed in the next section by propos-
ing expressions for the mean coefficients 0%, 0%, 0%, 0%, 0%, and o in terms of the
microscopic spectral coefficients o2, 0%%, o, a, /3, v, and 7.

2.3. Closure of the radiative equation with mean coefficients
The mean coefficients (2.15), (2.16), (2.9), (2.10), and (2.11) are closed in this section by
assuming a particular functional form for the intensity used in their definitions. For o§,
for instance, it is assumed that

<UG(U)I(t7r7Q7V))V747r <Ua(y)1*(t7ranay)>u4w *
o _ ~ AT _ o 2.22
2 (I(t,7,,0))y4r (I (t,r, @, 1)) am 9E (2.22)

where the assumed intensity is denoted I*. Similarly we assume that

is ~, -is* S . 8 K S~ S * S . 8 *
Op =0g , Ogp=0p, Op=0fp, 0g=0g (2.23)

where the designation * for the mean coefficients, 0%, a}f*, o%”, 0%", and 6&", indicates
that the intensity I has been replaced by the pseudo-intensity I*.

If we now assume that, at a microscopic level, the spectral absorption coefficient o® can
be approximated as a sum of polynomial functions of frequency: o®(v) = Efil Covi—3,
it follows that

N N
op =Y opiCLT) and 0§ =3 ok,(CFTr ) (2.24)
i=1 i=1
where op; and og; will be derived in the next section (Egs. (2.32) and (2.38)). In par-
ticular, it will be shown that they depend on the radiative temperature Tg and on the
anisotropic factor f defined below.
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If the spectral scattering coefficient can also be written as 0% (v) [1 — x(v)] =
SN Ci#ui=3 then the isotropic mean scattering coefficient can be then written in terms
of og; (see Eq. (2.38) in the next section) and is given by

N
08" = 3 05, (Ci, T, 1) (2.25)
i=1

Now let us assume that the incoming spectral scattering coefficients can also be approx-
imated as sums of polynomial functions:

N N N

o*(aw) = 3 CH 3, " W)BW) = 3 V=, and o*(W)y(v) = 3 €L
i=1 i=1 i=1
(2.26)
then we have

N N N
o3 =Y 03i(C3° TR f), 0" =) o5, (CP° Tr,f), 08" = 05,(CY°,Tg,f).

i=1 i=1 i=1

(2.27)

Finally, using these models for the mean absorption coefficients, the frequency-integrated
RTE in its closed form is given by

1 of a * is*
E@tJ+Q-VJ:ﬁaT4—aE J—oE T+

1 (05" Br+ 03" Fr - @+ cogy zljgpymm) (2.28)
2,7=1..

where all the mean coefficients are defined in terms of the functions o}, 0., , and oy,
defined in the following section.

2.4. Computation of the mean coefficients

The pseudo-intensity which is used in the definition of the mean coeflicients is obtained
from the maximization of the radiative entropy (Minerbo 1978; Fort 1997) and is given
by
2hv? hv -t
I*(t,r,Q = -1 2.2
(1, 900) = 25 lexpltre) -1 (2.29)

with T*(Q2) =1/(B(1 — A - Q)) and A and B defined by

_ /A 2 2 1%
A:ﬂf B 1 [3(‘34—&] i (2.30)

il © T T [3(1-[A]P)?

These two coeflicients are defined from the macroscopic quantities Tr, the radiative tem-
perature, and f, the anisotropic factor. The radiative temperature is defined in terms of
the radiative energy by Er = aT’g, and the anisotropic factor is given by f = Fg/(cER).

Let us assume that a polynomial approximation in frequency of the spectral absorption
and scattering coefficients can be done. Such a coefficient is chosen to have the following
form

N
o(v)=> C/'? (2.31)
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where C; are constants which depend on the gaseous medium considered, the volume
fraction of the main species, the pressure, etc.

First, the well-known Planck mean absorption coefficient is computed from the Planck
function (see Ripoll et al. 2001):

N N i-3
o(w)B(v,T)),, 15 . . kT
op(T) = W =Y oriCiT) = 5 il Ci i+ 1) <7> (2.32)
’ vy i=1 i=1
(2.33)
Second, the three mean coeflicients o}, 0, and o, are defined by
<U(V)I* (ta r, Q; V))I/ Q
7 = : 2.34
700 = T o 2,0 (239
* <U(V)Q-QII*(t,r,QI,I/»,,QI Q- <U(V)QII*(t7rJQIJV)>VQ’
— 2 = & 2.
UF(t; r, Q) (Q . Q'I*(t,l‘,ﬂ',ll))wnl Q. <QlI*(t,I',QI,I/))V7n: ( 35)
. ON27* ! ,
Jz;(t; I', Q) — <J(V)(Q Q ) I (tiri Q JV)>V:Q . (236)

((Q-QN)2I*(t,r, 2, v)).0
It should be noticed here that in I* the € dependence is only present through a

scalar product with the vector A. This greatly simplifies o as follows. The vector

(QUI*(t,r, ¥, v))qr necessarily has the form X (¢,r,v) A(t,r), where X is a scalar, which

leads to

(o)X (t,1,v)),

X, 0)) (2.37)

op(t,r) =

Thus, o does not depend on .

Moreover, the simple form of I* leads to analytical expressions for o and o, though
the computation is not detailed here (see Ripoll et al. 2001). These coefficients have also
been tested and validated for simple 1D problems (see Ripoll & Wray 2004a). They are
given by:

N
U*E(TRa f) = Z O'E'i(cia TR7 f)

;5 N , k 3pi (A
=57 3 (t=11Ci ¢(i+1) <hB(1 — ||A”2)) ﬁﬂln 1) (2.38)
N
U;‘(TRaf) = Za}i(ciaTRaf)
L R I Cre )H EUAD 5 59)
8t ot hB(1—[|A[]?) lA[>? '
with
P%(IIAII) =((1+ IIAII)" — (1= lAIDY/B+ ||A_||2) (2.40)
Pr([|A]l) = (1 = [[A[D)*GIIAI + 1) + (1 + A G| A[l - 1) (2.41)

with ¢ the Riemann Zeta function and A and B given in (2.30)}. The derivation of g

t for ¢ real but non-integer, these expressions are valid provided ! is replaced with I'(s + 1)
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involves the pressure tensor and is much more complex. We have

(0’(1/) Zj,k QJQ‘I]QkQ;cI*)V’Q:

ol = i k=1.3 2.42
S S RO PV o WPV (2.42)
Following the same developments as in Ripoll et al. 2001, it is found that
N
0&(Tr,£) = Y 05;(Ci, Tr, £) (2.43)
i=1
N i—3
45 : : k P, [|Al)
= — z—S!C’iCz+1)< ) G (2.44)
2t 207G GRa—Tap) TAT?
where P (A, ||]]) is given by
- (1 - [JA[) 24/ A (12 2 5
Pl = 1—||A A Al -3)(A-Q
G 1_||A||2+4(A_Q)2[( IA[DIAL" + (JA[F = 3)( )
+il[ AL+ [JADIIALP = (|A]li + 3)(A - )]
1+ ||A)
+ (- 1AL 5 [(IAII2 = DIIAIP + 3 - [[A*)(A - @)?)

1—[|A[]* +4(A - Q)
+illA[(L — [[ADIAI® + (Al - 3)(A - €)*]] (2.45)

It should be noticed here that the Planck mean op is a function of the volume fractions
C; and of the temperature, while the effective mean coeflicients o}, o}, are functions
of C; and of both the radiative temperature and anisotropic factor. In addition, o is
dependent on the scalar product between a vector parallel to the flux and the direction
Q.

The mean coefficients have been introduced to avoid the cost of the frequency inte-
gration. Thus, to be useful, the numerical cost of evaluating the mean coefficients and of
the iterations needed to solve for J must be lower than that of these time integrations.
The coefficients which are proposed here are analytic and should have low computational
cost. Furthermore, the three coefficients o, i ; have common parts (see (2.38)-(2.44)).
For absorbing media, it has been found that fewer than 6 iterations to solve the RTE were
needed in the cases studied (Ripoll & Wray 2004a), which indicates that this method
does not have a high numerical cost.

3. The linear case: application to soot

The apparent complexity of the coefficients in the previous section is only due to the
polynomial expansion in frequency. For sooty media the absorption dependence is linear,
and in this case the coefficients turn out to be quite simple.

The linear spectral absorption and isotropic scattering coefficients are written as

o¢(v) = C%, o°w)=C%, and o*v)[l-x(v)]=C%v (3.1)

As a rough approximation, we here also assume that the scattering follows a linear lawf.
The spectral scattering coefficients are then written as

! W)av) = C*%v, o*)B(v) = C?*v, and o*W)y(v) =C"*v. (3.2)

1 More complex models, such as in Houf 1999, could also be treated but would need to
introduce higher order terms in frequency
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We define for convenience the following coefficients:

k
cs = 360%090 (3.3)
wth
where z is a variable which will alternatively take the value a, €, is, (a,s), (8,s), (v, s)
below. The Planck absorption coefficient becomes then
k
0%(T) = opa(C°,T) = 360 06£T = 05T (3.4)
Using (2.38), (2.39), (2.44) for i = 4, and the definition (3.1), the general form for the
mean coefficients is given by

o1, (C% T £) = 3C% 1 +2!|A||2 ~ = C5 TR Gp(f) (3.5)
B(1 - [lA[*)B +[[All?)
 (ow _ Cp 5+IAIP _

1-[lA]* +6(A - Q)%)
(1= AP - [Al* +4(A - Q)?)
where the functions Gg, r, are obtained by using the definitions (2.30) in (3.5)-(3.7).

Hence, the mean absorption and isotropic scattering coefficients are given in the linear
case by

054(C*, T, ) = Cp g =CLTrGe(f,Q) (3.7)

05" = 05, (C*, Tr, f) = Cp TR G (f) (3-8)
of" = 054(C*, Tr, ) = CE TrGu(f)

and the incoming mean scattering coefficients are given by

05" = 054(C%*, Tr,£) = C3* T Gr(f) (3.10)
05" = 03,(CP*, Th,f) = CF° Ta Gr(£) (3.11)
Ug* = 054(CW’S7TR7f7 Q) = 07375 TR GG(f7 Q) (312)

The integrated RTE,

e

28+ = P Tt g% gt J+ - (05" Brtof " Fr-Q+co > PP
C 7/

4T .
i,j=1..3
(3.13)
becomes using the previous definitions :
1 [ )
zatJ +Q-VJ= i—;:aT‘r’ — CTrGE(f)J — CETRGE(f)J
T S
+ ﬁ(cCSGE(f)ER +CRGr(OF - Q@ +cCPGa(f,Q) Y PRi0l).
i,j=1..3
(3.14)

If isotropy is assumed for the functions Gk, r g, the following simpler form is obtained:
1 Cfs 5 a is
E&J +Q-VJ= EGT —CpTRrJ — C8TRJ

T o
+ﬁ(cC%ER+C§'FR-Q+cC} > Pl (3.15)
i,j=1..3
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with CIB,I =5/ 4C§.. In Ripoll & Wray 2004a, it was found that the function Gg played an
important role. Eq. 3.15 should hence not be used for radiating flows where the anisotropy
| £]] is larger than 0.3.

4. Macroscopic radiation models for absorbing and scattering media

We show in this section that the mean coefficients can be easily included in macroscopic
moment models. We define the three first moments with respect to direction as

B (t,r,0) =~ (T(t,x,9,0))q (1)
F(r,0) = (I(t,r,,0)q (42)
P (t,r,v) = % Qe QI(trQ,v), (4.3)

The first moment equation is obtained by integrating Eq. (2.1) with respect to 2. We
obtain

HES +V -FL = drco®(v)B — co®(v)ES} (4.4)
where the incoming and isotropic scattering have canceled using the normalization prop-
erty (2.4).

Multiplying (2.1) by €, and integrating with respect to it, using the phase function
definition (2.3), we obtain

1 .
Z@Fg +¢cV-PE = —(6°(v) + o (v)(1 — x(v)) — US(V)@)Fg. (4.5)
The following three equalities have been used:

Using definitions (2.18), (2.19), and (2.20), the integration of (4.4) over frequency gives
HEr+V -Fg=ca(ocpT* — o4ER) (4.7)

where models 0% and 0%, ~ 0%* were given previously in (2.24).
Integrating (4.5) over frequency leads to the second moment equation

1 . 1
EatFR—i-cV-PR = —(op +oF — gUﬁ)FR, (4.8)
for which the models for the mean coefficients are
N
op =03 =Y opi(CF,Tr,f) (4.9)
i=1
N
o ~ 0" =) opi(CP, Th,¥f) (4.10)
i=1
i N
op ~op =Y opi(C)°,Tr,f) (4.11)
i=1

where or; is defined in (2.39).
Closure of the macroscopic model (4.7)-(4.8) is achieved by modeling the radiative
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pressure in (4.8). In many different closures the pressure is written as Pr = Dgr(f)ERg,
where Dg(f) is the Eddington tensor (Ripoll & Wray 2004b).

Combining the steady forms of (4.8) and (4.7) to eliminate the flux Fg leads to the
general Milne-Eddington equations

1
-V -( —— 5.V (DrEg)) = 0pal* — o} Ep . (4.12)
(0 +0F — 30%)

Or, similarly, by eliminating the energy Eg, one obtains

e
-V (% V- -Fg)+ (0% + ol — 1ag)m = —cV - (Z2DgaT?) . (4.13)
OE 3 oE

We have two main comments on the model (4.7)-(4.8); they also apply to the formu-
lation (4.12)-(4.13). First, the normalization property (2.4) eliminates the pressure term
coming from the scattering in the first moment equation (4.7). Second, the contribution
of the incoming scattering integrated over direction only enters through the first order
and delta-function parts of the scattering function in (4.13), since the zero and second
order terms vanish.

5. On the use of these models and their numerical costs

The models presented here will be useful when the solution for frequency dependent
intensities cannot be done due to its cost. This is usually the case for coupled problems.
We now give a discussion on reducing the computational cost of the models presented
here.

First, when using mean coefficients, it is possible to reduce the computational cost by
noticing that when the radiation is isotropic and close to equilibrium, the coefficients
oE,c are equal to the Planck mean and of to (i + 1/4)op. There is hence no need to
evaluate the complex expressions for o r g, and they should be simply replaced by their
limits. More generally, these limits can be extended to ||f]| < 0.1 when T ~ Tg. In the
case where the radiation is isotropic but T # Tg, the limit that should be taken is also
the Planck mean but evaluated at Tg instead of T't. It should also be noticed that the
form of the mean coefficients proposed here, in terms of A and B, should be retained. As
a matter of fact, this choice allows checking the different limits and avoids introducing
singularities. For instance, (2.30) can directly be replaced by their limits, respectivelly
A=0and B=1/T, for ||f|| <0.1.

The solution of the RTE with mean coefficients requires iteration since the mean
coefficients are nonlinear functions of I. The required number of iterations has been found
to be small in many simple cases (Ripoll & Wray 2004a), but one could be tempted to
reduce it further. In the case of using such an equation for coupled problems, the previous
time step provides excellent starting values for the iterative solution so that the required
number of iterations should be lower, perhaps only one or two. Another alternative in
this case could be not to iterate the RTE at all, i.e., to lag it in time, assuming that a
small difference between the opacity and the intensity due to their non-synchronization
in time with the fluid motion will not strongly affect the solution. This is likely when a
global convergence process of the hydrodynamics and radiation to a steady state leads
to synchronizing all the variables at the end. For the very first iteration, the Planck limit
seems to be a good initial condition. It should also be noticed here that the moment model

1 as was shown in (3.15) in the linear case
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(4.7)-(4.8) can similarly be solved by using the mean coefficients from the previous time
step of the radiation loop or of the hydrodynamics loop in coupled problems.

6. Conclusion

The objective of this work was to propose a simple model accounting for radiation
in complex emitting, absorbing, and scattering media. To do that, models for mean
absorption and mean isotropic and incoming scattering coefficients have been proposed
in the case where the various spectral coefficients can be written in terms of polynomial
functions. Some of these models were previously derived and validated (Ripoll et al.
2001, Ripoll & Wray 2004a) for non-scattering media; they have been extended here to
the general case. An integrated RTE which uses these coefficients has been derived where
the integral scattering term has been absorbed into the modeling. Such a form of the RTE
is much less costly to solve than the RTE in its non-modeled form. Macroscopic moment
radiation models, written in their hyperbolic or diffusive forms, have also been derived
using these coefficients. The particular case where the spectral coefficients are linear in
frequency has been treated. This case is particularly important for soot and hence for
combustion applications. It has also been explained how such models can be used at
a lower cost by reducing the number of iterations needed. We believe the formulations
proposed here could be used in many complex or coupled problems, like flows radiating
in dusty media, where, for instance, isotropic and non-isotropic scattering are usually
disregarded and neglected due to their computational cost.
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